Math    schooL

 

 

Жюль Анри Пуанкаре

1854–1912

  

Геологическая история показывает нам, что жизнь есть лишь беглый эпизод между двумя вечностями смерти, и что в этом эпизоде прошедшая и будущая длительность сознательной мысли – не более как мгновение. Мысль – только вспышка света посреди долгой ночи. Но эта вспышка – всё.

Анри Пуанкаре

 

Жюль Анри Пуанкаре (29 апреля 1854 – 17 июля 1912) –  великий французский ученый, внесший большой вклад во многие разделы математики, физики и механики. Основоположник качественных методов теории дифференциальных уравнений и топологии. Создал основы теории устойчивости движения. В его статьях до работ Эйнштейна были сформулированы основные положения специальной теории относительности, такие как, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла. Разработал и применил метод малого параметра к задачам небесной механики, провел классическое исследование задачи трех тел. В философии создал новое направление, получившее название конвенционализма.

Анри Пуанкаре родился во французском городе Нанси. Его 26-летний отец, Леон Пуанкаре успешно совмещает обязанности практикующего врача с лабораторными исследованиями и лекциями на медицинском факультете. Мадам Пуанкаре, Евгения Лануа, весь день проводила в хлопотах. Вся ее жизнь была посвящена исключительно воспитанию детей – сына Анри и дочери Алины. Удивляет и тревожит родственников необычная рассеянность маленького Анри. От этого недостатка ему никогда не избавиться, и со временем о рассеянности знаменитого Пуанкаре будут рассказывать целые легенды. Никому еще невдомек, что рассеянность Анри свидетельствует о врожденной способности почти полностью отвлекаться от окружающей действительности, глубоко уходя в свой внутренний мир.

В детстве он перенёс дифтерию, которая осложнилась временным параличом ног и мягкого нёба. Паралич ног отступил быстрее, но шли месяцы, а Анри по-прежнему был бессловесным. Он стал особенно внимательным к звуковой стороне жизни, текущей совсем рядом, за дверями комнаты. Слух стал единственным связующим звеном между ним и остальной частью дома. Анри стал вместилищем невысказанных звуков. Много лет спустя психологи, обследуя гениального ученого, отметят у него нечасто встречающуюся особенность – красочное восприятие звуков. Каждый гласный звук ассоциируется у Пуанкаре с каким-нибудь цветом. Обычно способность эта, если она имеется, сильнее всего проявляется в детском возрасте. У Анри Пуанкаре она сохранилась до конца жизни.

К счастью, самые худшие опасения не оправдались: Анри обрел способность говорить. Но очень долго не проходила физическая слабость. Все заметили, что после болезни Анри очень переменился не только внешне, но и внутренне. Он стал робким, мягким и застенчивым. Домашним обучением Анри, ослабленного болезнью, занимается Альфонс Гинцелин, давний друг семьи Пуанкаре – широко образованный и эрудированный человек, прирожденный преподаватель. Урок за уроком проходил Анри своеобразный курс обучения. Не обошли они своим вниманием биологию, географию, историю, правила грамматики, четыре действия арифметики. Учитель не без удивления убедился, что Анри неплохо считает в уме. Но, чем бы они ни занимались, Анри редко приходилось брать в руки перо или карандаш. С него не спрашивали письменных заданий, не загружали его рутиной. Постороннему наблюдателю могло показаться, что учитель просто беседует со своим учеником о всякой всячине. От природы великолепная слуховая память Анри еще больше окрепла и обострилась от этих упражнений. Опыт усвоения знаний почти без фиксации на бумаге, с минимумом письменной работы, попав на "благодатную" почву, вырос в глубоко своеобразную, резко индивидуальную манеру. На всю жизнь останется у него если не отвращение, то, по крайней мере, пренебрежение к писанине, к процессу графического закрепления своих знаний. Эту его черту не смогли исправить все последующие годы учебы.

Хорошая домашняя подготовка позволила Анри восемь с половиною лет поступить сразу в девятый класс лицея (отсчет классов ведется в обратном порядке – с десятого, начального, по первый, самый старший класс). Преподаватели нансийского лицея были довольны прилежным и любознательным учеником. Сочинение по французскому языку, которое он написал в конце девятого класса, профессор лицея назвал "маленьким шедевром" за стиль и вдохновенно-эмоциональное изложение. Математика, а вернее арифметика, не затронула его души, хотя он без особых затруднений справлялся с излагаемым материалом. Но однажды, когда Анри учился в четвертом классе в дом Пуанкаре явился один из преподавателей лицея. Весьма взволнованный, он сообщил встретившей его хозяйке дома: "Мадам, ваш сын будет математиком!" И так как лицо мадам Пункаре не отразило ни восторга, ни удивления, новоявленный пророк поспешил добавить: "Я хочу сказать, он будет великим математиком!"

Несмотря на обнадеживающие и недвусмысленные успехи по математике, он переходит на отделение словесности. По-видимому, таково было желание его родителей, считавших, что их сын непременно должен получить полное гуманитарное образование. Анри усиленно штудирует латынь, изучает античных и новых классиков.

5 августа 1871 года лицеист Пуанкаре успешно сдал экзамены на бакалавра словесности с оценкой "хорошо". Его латинское сочинение превзошло даже сочинение на французском языке и заслужило наивысшей оценки. Ряды словесников Франции могли бы пополниться весьма талантливым, незаурядным мыслителем, если бы Анри избрал филологический факультет университета. Но этим надеждам некоторых преподавателей лицея не суждено было сбыться. Через несколько дней Анри изъявил желание участвовать в экзаменах на степень бакалавра наук.

Экзамен состоялся 7 ноября 1871 года. Пуанкаре выдержал его, но лишь с оценкой "удовлетворительно". Подвела его письменная работа по математике, которую Анри попросту провалил. История этого казуса такова: опоздав на экзамен, весьма возбужденный и выбитый из колеи, Анри плохо понял задание. Требовалось вывести формулу для суммы геометрической прогрессии. Но Пуанкаре отклонился от темы и начал излагать совершенно другой вопрос. В результате написанная им работа заслуживала лишь неудовлетворительной оценки. По формальным правилам Анри должен был в этом случае выбыть из числа экзаменующихся. Но слава о его необычных математических способностях достигла даже стен университета, где происходили экзамены на бакалавра. Университетские профессора отнеслись к его провалу как к досадному недоразумению и закрыли глаза на некоторое нарушение формальных канонов ради торжества справедливости. Им не пришлось об этом пожалеть, когда они присутствовали на устном экзамене. Анри отвечал уверенно и блестяще, продемонстрировав свободное владение материалом. Ему была присуждена степень бакалавра наук.

Получив диплом бакалавра наук, Анри поступает в класс элементарной математики. Только теперь по-настоящему полно и самозабвенно отдается он своему будущему призванию. Не довольствуясь рекомендованными учебниками, он изучает более серьезную математическую литературу.

В октябре 1873 года Анри становится студентом Политехнической школы, которая набирала и подготавливала претендентов на высшие технические должности в государственном аппарате и в армии. После вступительных экзаменов Пуанкаре выходит на первое место в списке лучших учеников школы, но затем постепенно теряет его. Виной тому были такие предметы, как военное дело, черчение и рисование. Как и в лицее, Анри не проявляет никаких признаков художественного дарования. Даже на занятиях по математике, если он чертит на доске прямые линии, сходящиеся в одной точке, то они оказываются у него ни прямыми, ни сходящимися.

Наставником Пуанкаре по математике был Шарль Эрмит. В следующем году Пуанкаре опубликовал в «Анналах математики» свою первую научную работу по дифференциальной геометрии.

По результатам двухлетнего обучения, в 1875 году, Пуанкаре приняли в Горную школу, наиболее авторитетное в то время специальное высшее учебное заведение. Там он через несколько лет, под руководством Эрмита, защитил докторскую диссертацию, о которой Гастон Дарбу, тридцатишестилетний французский математик, профессор Сорбонны и Нормальной школы, входивший в состав комиссии, сказал:

С первого же взгляда мне стало ясно, что работа выходит за рамки обычного и с избытком заслуживает того, чтобы её приняли. Она содержала вполне достаточно результатов, чтобы обеспечить материалом много хороших диссертаций.

С апреля 1879 года выпускник Горной школы Анри Пуанкаре распределен в Везуль простым инженером шахт третьего класса. В его обязанности входит наблюдение, контроль и инспектирование каменноугольных копей. Кроме того, он состоит на службе контроля и эксплуатации железных дорог.

Ранним утром 1 сентября 1879 года, еще до рассвета, произошел взрыв рудничного газа и неизвестна судьба около двух десятков шахтеров, оставшихся под землей. Исполняя свой долг, Пуанкаре спускается вместе со спасательно-поисковой группой в зияющее жерло шахты навстречу полной неизвестности. В последовавшей затем суматохе администрация даже сообщила о гибели инженера Пуанкаре при расследовании обстоятельств аварии. К счастью, это была ошибка. Он благополучно поднялся на поверхность земли, выяснив размеры и причины происшедшей катастрофы.

Диссертация давала Анри Пуанкаре право преподавать в высших учебных заведениях. И он не замедлил этим воспользоваться.

1 декабря 1879 года он отбывает в Кан, где был назначен преподавателем курса математического анализа на Факультете наук. Покинув Везуль, он никогда больше не вернется к деятельности горного инженера, но по-прежнему будет числиться по своему ведомству, время от времени получая повышения в звании.

В Кане Пуанкаре познакомился со своей будущей женой Луизой Пулен д’Андеси. 20 апреля 1881 года состоялась их свадьба. У них родились сын и три дочери.

Оригинальность, широта и высокий научный уровень работ Пуанкаре сразу поставили его в ряд крупнейших математиков Европы и привлекли внимание других видных математиков. В 1881 году Пуанкаре был приглашён занять должность преподавателя на Факультете наук в Парижском университете, и принял это приглашение. Параллельно, с 1883 года по 1897 год, он преподавал математический анализ в Высшей Политехнической школе.

В 1881–1882 годах Пуанкаре создал новый раздел математики – качественную теорию дифференциальных уравнений. Он показал, каким образом можно, не решая уравнения (поскольку это не всегда возможно), получить практически важную информацию о поведении семейства решений. Этот подход он с большим успехом применил к решению задач небесной механики и математической физики.

На протяжении XIX века практически все видные математики Европы участвовали в развитии теории эллиптических функций, оказавшихся чрезвычайно полезными при решении дифференциальных уравнений. Всё же эти функции не вполне оправдали возлагавшиеся на них надежды, и многие математики стали задумываться над тем, нельзя ли расширить класс эллиптических функций так, чтобы новые функции были применимы и для тех уравнений, где эллиптические функции бесполезны.

Пуанкаре впервые нашёл эту мысль в статье Лазаря Фукса, виднейшего в те годы специалиста по линейным дифференциальным уравнениям (1880). В течение нескольких лет Пуанкаре далеко развил идею Фукса, создав теорию нового класса функций, который он, с обычным для Пуанкаре равнодушием к вопросам приоритета, предложил назвать фуксовы функции – хотя имел все основания дать этому классу своё имя. Дело закончилось тем, что Феликс Клейн предложил название «автоморфные функции», которое и закрепилось в науке. Пуанкаре вывел разложение этих функций в ряды, доказал теорему сложения и теорему о возможности униформизации алгебраических кривых (то есть представления их через автоморфные функции; это 22-я проблема Гильберта, решённая Пуанкаре в 1907 году). Эти открытия «можно по справедливости считать вершиной всего развития теории аналитических функций комплексного переменного в XIX веке».

При разработке теории автоморфных функций Пуанкаре обнаружил их связь с геометрией Лобачевского, что позволило ему изложить многие вопросы теории этих функций на геометрическом языке. Он опубликовал наглядную модель геометрии Лобачевского, с помощью которой иллюстрировал материал по теории функций.

После работ Пуанкаре эллиптические функции из приоритетного направления науки превратились в ограниченный частный случай более мощной общей теории. Открытые Пуанкаре автоморфные функции позволяют решить любое линейное дифференциальное уравнение с алгебраическими коэффициентами и находят широкое применение во многих областях точных наук.

Десятилетие после завершения исследования автоморфных функций (1885–1895 годы) Пуанкаре посвятил решению нескольких сложнейших задач астрономии и математической физики. Он исследовал устойчивость фигур планет, сформированных в жидкой (расплавленной) фазе, и обнаружил, кроме эллипсоидальных, несколько других возможных фигур равновесия.

Когда Пуанкаре был еще ребенком, величественный спектакль звездной ночи пленил его младенческий ум. Позже он напишет в одной из своих статей:

Звезды шлют нам не только видимый и ощущаемый свет, действующий на наше плотское зрение; от них исходит также иной, более тонкий свет, проясняющий наш ум.

Вероятно именно этот утонченный "свет" постигаемой истины увидел Пуанкаре своим внутренним зрением, когда интерес его обратился к законам движения небесных тел.

В январе 1889 года на международный конкурс, объявленный королем Оскаром II, было представлено одиннадцать работ. Жюри конкурса признало лучшими две из них. Одна работа принадлежала Полю Аппелю и называлась "Об интегралах функций со множителями и об их применении к разложению абелевых функций в тригонометрические ряды". Другая работа имела в качестве девиза строчку из латинского стихотворения: "Nunquam praescriptos transibunt sidera fines" – "Никогда не перейдут светила предписанных границ". Это был мемуар Анри Пуанкаре, который представлял собой обширное исследование задачи трех тел. Обе работы были удостоены премии на равных основаниях. Друзья разделили славу и почести.

Один из двух судей, Миттаг-Леффлер, писал о работе Пуанкаре:

Премированный мемуар окажется среди самых значительных математических открытий века.

Второй судья, Вейерштрасс, заявил, что после работы Пуанкаре

начнётся новая эпоха в истории небесной механики.

За этот успех французское правительство наградило Пуанкаре орденом Почётного легиона.

Осенью 1886 года 32-летний Пуанкаре возглавил кафедру математической физики и теории вероятностей Парижского университета. Символом признания Пуанкаре ведущим математиком Франции стало избрание его президентом Французского математического общества в 1886 году и членом Парижской академии наук в следующем.

В 1889 году выходит фундаментальный «Курс математической физики» Пуанкаре в 10 томах.

Подобно Эйлеру, Пуанкаре за короткий срок переосмыслил и обновил складывавшийся в течение двух столетий математический аппарат небесной механики, использовав самые последние достижения математики. В трехтомном трактате "Новые методы небесной механики" (1892-1899) Пуанкаре исследовал периодические и асимптотические решения дифференциальных уравнений, доказал асимптотичность некоторых рядов, являющихся решениями дифференциальных уравнений с частными производными, ввел методы малого параметра, метод неподвижных точек. Ему принадлежат также важные для небесной механики труды об устойчивости движения и о фигурах равновесия гравитирующей вращающейся жидкости. Метод "интегральных инвариантов", использованный Пуанкаре, стал классическим средством теоретического исследования не только в механике и астрономии, но и в статической физике и в квантовой механике. Вклад Анри Пуанкаре в небесную механику был столь значительным, что на вакантное место главы кафедры небесной механики Сорбонны он утверждается единогласно. Оставив кафедру математической физики и теории вероятностей, которой руководил десять лет, с осени 1896 года профессор Пуанкаре уже ведет курсы по некоторым традиционным разделам небесной механики.

С 1893 года Пуанкаре – член престижного Бюро долгот (в 1899 году избран его президентом). С 1896 года переходит на университетскую кафедру небесной механики, которую занимал до конца жизни. В этот же период, продолжая работы по астрономии, он одновременно реализует давно продуманный замысел создания качественной геометрии, или топологии: с 1894 года он начинает публикацию статей, посвящённых построению новой, исключительно перспективной науки.

Предмет топологии ясно определил ещё Феликс Клейн в своей «Эрлангенской программе» (1872): это геометрия инвариантов произвольных непрерывных преобразований, своего рода качественная геометрия. Сам термин «топология» ещё ранее предложил Иоганн Бенедикт Листинг. Некоторые важные понятия ввели Энрико Бетти и Бернхард Риман. Однако фундамент этой науки, причём достаточно детально разработанный для пространства любого числа измерений, создал Пуанкаре.

В августе 1900 года Пуанкаре руководил секцией логики Первого Всемирного философского конгресса, проходившего в Париже. Там он выступил с программным докладом «О принципах механики», где изложил свою конвенционалистскую философию: принципы науки суть временные условные соглашения, приспособленные к опыту, но не имеющие прямых аналогов в реальности. Эту платформу он впоследствии детально обосновал в книгах «Наука и гипотеза» (1902), «Ценность науки» (1905) и «Наука и метод» (1908). В них он также описал своё видение сущности математического творчества, в котором главную роль играет интуиция, а логике отведена роль обоснования интуитивных прозрений. Ясный стиль и глубина мысли обеспечила этим книгам значительную популярность, они были сразу же переведены на многие языки. Одновременно в Париже проходил Второй Международный конгресс математиков, где Пуанкаре был избран председателем.

Основной сферой интересов Пуанкаре в XX веке становятся физика (особенно электромагнетизм) и философия науки. Пуанкаре показывает глубокое понимание электромагнитной теории, его проницательные замечания высоко ценят и учитывают Лоренц и другие ведущие физики. С 1890 года Пуанкаре опубликовал серию статей по теории Максвелла, а в 1902 году начал читать курс лекций по электромагнетизму и радиосвязи. В своих статьях 1904–1905 годов Пуанкаре далеко опережает Лоренца в понимании ситуации, фактически создав математические основы теории относительности (физический фундамент этой теории разработал Эйнштейн в 1905 году).

Как член Бюро долгот, Пуанкаре участвовал в измерительных работах этого учреждения и опубликовал несколько содержательных работ по проблемам геодезии, гравиметрии и теории приливов.

Именно по инициативе Пуанкаре молодой Антуан Анри Беккерель занялся изучением связи фосфоресценции и рентгеновских лучей в 1896 году, и в ходе этих опытов была открыта радиоактивность урановых соединений.

Пуанкаре первым вывел закон затухания радиоволн.

В последние два года жизни Пуанкаре живо интересовался квантовой теорией. В обстоятельной статье «О теории квантов» (1911) он доказал, что невозможно получить закон излучения Планка без гипотезы квантов, тем самым похоронив все надежды как-то сохранить классическую теорию.

В 1906 году Пуанкаре избран президентом Парижской академии наук. В 1908 году он тяжело заболел и не смог сам прочитать свой доклад на Четвёртом математическом конгрессе. Первая операция закончилась успешно, но спустя 4 года состояние Пуанкаре вновь ухудшилось.

Анри Пуанкаре скончался в Париже после операции от эмболии 17 июля 1912 года в возрасте 58 лет. Похоронен в семейном склепе на кладбище Монпарнас.

Математическая деятельность Пуанкаре носила междисциплинарный характер, благодаря чему за тридцать с небольшим лет своей напряжённой творческой деятельности он оставил фундаментальные труды практически во всех областях математики. Работы Пуанкаре, опубликованные Парижской Академией наук в 1916–1956 годах, составляют 11 томов. Среди его самых крупных достижений:

  • создание топологии
  • качественная теория дифференциальных уравнений
  • теория автоморфных функций
  • разработка новых, чрезвычайно эффективных методов небесной механики
  • создание математических основ теории относительности
  • наглядная модель геометрии Лобачевского.

Во всех разнообразных областях своего творчества Пуанкаре получил важные и глубокие результаты. Хотя в его научном наследии немало крупных работ по «чистой математике», всё же существенно преобладают труды, результаты которых имеют непосредственное прикладное применение. Особенно это заметно в его работах последних 15–20 лет. Тем не менее, открытия Пуанкаре, как правило, имели общий характер и позднее с успехом применялись в других областях науки.

Творческий метод Пуанкаре опирался на создание интуитивной модели поставленной проблемы: он всегда сначала полностью решал задачи в голове, а затем записывал решение. Пуанкаре обладал феноменальной памятью и мог слово в слово цитировать прочитанные книги и проведённые беседы. Кроме того, он никогда не работал над одной задачей долгое время, считая, что подсознание уже получило задачу и продолжает работу, даже когда он размышляет о других вещах. Свой творческий метод Пуанкаре подробно описал в докладе «Математическое творчество» (1908 год).

Поль Пенлеве так оценил значение Пуанкаре для науки:

Он всё постиг, всё углубил. Обладая необычайно изобретательным умом, он не знал пределов своему вдохновению, неутомимо прокладывая новые пути, и в абстрактном мире математики неоднократно открывал неизведанные области. Всюду, куда только проникал человеческий разум, сколь бы труден и тернист ни был его путь – будь то проблемы беспроволочной телеграфии, рентгеновского излучения или происхождения Земли – Анри Пуанкаре шёл рядом… Вместе с великим французским математиком от нас ушёл единственный человек, разум которого мог охватить всё, что создано разумом других людей, проникнуть в самую суть всего, что постигла на сегодня человеческая мысль, и увидеть в ней нечто новое.

Анри Пуанкаре состоял членом 22 Академий и почетным доктором 8 университетов.

Награды и звания, полученные Пуанкаре:

  • 1885: премия Понселе, Парижская академия наук
  • 1886: избран президентом Французского математического общества
  • 1887: избран членом Парижской академии наук
  • 1889: премия за победу в математическом конкурсе, король Швеции Оскар II
  • 1889: орден Почётного легиона
  • 1893: избран членом Бюро долгот (так исторически называется Парижский институт небесной механики)
  • 1894: избран иностранным членом Лондонского королевского общества
  • 1895: избран иностранным членом-корреспондентом Петербургской академии наук
  • 1896: премия Жана Рейно, Парижская академия наук
  • 1896: избран президентом Французского астрономического общества
  • 1899: премия Американского философского общества
  • 1900: Золотая медаль Королевского астрономического общества, Лондон
  • 1901: медаль Сильвестра, Королевское общество, Лондон
  • 1903: золотая медаль фонда имени Н.И. Лобачевского (Физико-математическое общество Казани), как рецензенту Давида Гильберта
  • 1905: премия Яноша и Фаркаша Больяи, Венгерская академия наук
  • 1905: медаль Маттеуччи, Итальянское научное общество
  • 1906: избран президентом Парижской академии наук
  • 1908: избран членом Французской академии
  • 1909: золотая медаль, Французская ассоциация содействия развитию науки
  • 1911: медаль Кэтрин Брюс, Тихоокеанское астрономическое общество
  • 1912: избран директором Французской академии

Именем Пуанкаре названы:

  • кратер на обратной стороне Луны.
  • астероид
  • Международная премия Пуанкаре за работы по математической физике
  • Институт математики и теоретической физики в Париже
  • университет в Нанси.
  • улица в Париже

Имя Пуанкаре носят следующие математические объекты:

  • гипотеза Пуанкаре
  • группа Пуанкаре
  • двойственность Пуанкаре
  • лемма Пуанкаре
  • метрика Пуанкаре
  • модель Пуанкаре пространства Лобачевского
  • нормальная форма Пуанкаре – Дюлака
  • отображение Пуанкаре
  • последняя теорема Пуанкаре
  • сфера Пуанкаре
  • теорема Пуанкаре – Бендиксона
  • теорема Пуанкаре – Вольтерра
  • теорема Пуанкаре о векторном поле
  • теорема Пуанкаре о возвращении
  • теорема Пуанкаре о скорости роста целой функции
  • теорема Пуанкаре о классификации гомеоморфизмов окружности
  • теорема Пуанкаре – Биркгофа – Витта
  • теорема Пуанкаре – Хопфа
  • комплекс Пуанкаре
  • вычет Пуанкаре
  • неравенства Пуанкаре
  • синхронизация Пуанкаре – Эйнштейна
  • уравнение Пуанкаре-Лелона
  • модульная форма Пуанкаре
  • метрики Пуанкаре
  • пространства Пуанкаре
  • оператор Пуанкаре – Стеклова
  • симметрия Пуанкаре и др.

 

По материалам Википедии, сайта eqworld.ipmnet.ru и книги «Шеренга великих математиков» (Варшава, изд. Наша Ксенгарня, 1970). 

 

Нам 4 года!

14 марта 2016 года сайту Математика для школы|math4school.ru исполнилось 4 года. Поскольку число 4 для нашего сайта не чужое, мы решили подвести некоторые итоги.

Новый формат главного меню

Расширены функциональные возможности главного меню.

Галерея на сайте math4school.ru
Приглашаю посетить Галерею, – новый раздел на сайте.

444 года со дня рождения Иоганна Кеплера

27 декабря 2015 года исполнилось 444 года со дня рождения Иоганна Кеплера.

Новый раздел на сайте math4school.ru

Закончена работа над новым разделом сайта Работа над ошибками.