Предел и непрерывность функции

Загрузка ...

 

Предел функции y = f(x) при х → ∞

Вычисление пределов функции при х → ∞

Непрерывные функции

Теоремы про непрерывность функции

Замечательные пределы

Вычисление пределов функции в точке

  

Предел функции y = f(x) при х → 

Определение.

Число b называется пределом функции y = f(x) при х+∞, если для любого числа ε > 0 найдётся такое число М > 0, что для всех х > М выполняется неравенство |f(x) – b|< ε.

Записывают так:

lim х→+ f(x) = b.

Геометрически это означает, что график функции y = f(x) при выборе достаточно больших значений х безгранично приближается к прямой у = b. Это означает, что расстояние от точки графика до прямой у = b по мере удаления точки в бесконечность может быть сделано меньше любого числа ε > 0. Прямая  называется в этом случае горизонтальной асимптотой графика функции y = f(x).  

Например: lim х→+ 1/х = 0 и функция y = 1/х имеет горизонтальную асимптоту у = 0.

 

Определение.

Число b называется пределом функции y = f(x) при х∞, если для любого числа ε > 0 найдётся такое число М > 0, что для всех х < –М выполняется неравенство |f(x) – b|< ε.

Записывают так:

lim х→ f(x) = b.

В этом случае прямая y = b также является горизонтальной асимптотой функции  y = f(x), график которой бесконечно близко приближается к ней при достаточно больших по модулю, но отрицательных значениях х.

Например: lim х→ (3 + 2х) = 3 и функция y = (3 + 2х) имеет горизонтальную асимптоту у = 3.

 

Наконец, прямая у = b  может быть горизонтальной асимптотой графика функции  и при х+∞, и при х∞. Пишут так: х∞.

Определение.

Число b называется пределом функции y = f(x) при х → ∞, если для любого числа ε > 0 найдётся такое число М > 0, что для всех x таких, что |х| > М, выполняется неравенство |f(x) – b|< ε.

Записывают так:

lim х→∞ f(x) = b.

Например: lim х→∞ х2/(х2+1) = 1 и функция y = х2/(х2+1) имеет горизонтальную асимптоту у = 1.

 

Вычисление пределов функции при х → 

Для вычисления пределов функций при х→∞ используются следующие теоремы об операциях над пределами:

 

Теорема о вынесении постоянного множителя за знак предела:

Если lim х f(x) = a, то lim х→∞ k · f(x) = k · а.

 

Теорема о пределе суммы:

Если lim х→∞ f(x) = a, lim х→∞ g(x) = b, то lim х→∞ (f(x) + g(x)) = а + b.

 

Теорема о пределе произведения:

Если lim х→∞ f(x) = a, lim х→∞ g(x) = b, то lim х→∞ f(x) · g(x) = а · b.

 

Теорема о пределе частного:

Если lim х→∞ f(x) = a, lim х→∞ g(x) = b и b ≠ 0, то lim х→∞ f(x) / g(x) = а / b.

  

Непрерывные функции 

Определение.

Функция y = f(x) называется непрерывной в точке х = а, если существует предел функции в этой точке, т.е.

lim х→а f(x) = f(a).

Функция y = f(x) будет непрерывной в точке х = а тогда и только тогда, когда выполняются условия:

lim х→а f(x) = f(a). 

Другими словами верно и такое

Определение.

Функция y = f(x) непрерывна в точке х = а, если для любого числа ε > 0 существует такое число δ > 0, что для всех х, удовлетворяющих условию |x – a| < δ, выполняется неравенство |f(x) – f(a)| < ε.

Определение.

Если функция y = f(x) непрерывна в каждой точке некоторого промежутка, то её называют непрерывной на данном промежутке.

 

Теоремы про непрерывность функции

Теорема 1:

Если функции f(x) и g(x) непрерывны в точке х = а, то в этой точке непрерывны и функции  f(x) + g(x), f(x) – g(x), f(x) · g(x).

 

Теорема 2:

Если функции f(x) и g(x) непрерывны в точке х = а и g(а) ≠ 0, то в точке х = а  будет непрерывной также функция f(x) / g(x).

 

Исходя из двух последних теорем можно утверждать:

y =  a0 + a1x + a2x2 + . . . + anxn
b0 + b1x + b2x. . . + bmxm

        непрерывна во всех точках числовой оси, кроме нулей знаменателя;

 

Замечательные пределы

Замечательные пределы – термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:

 

Первый замечательный предел:

lim х→ 0  sin x  = 1.
x

Следствия из первого замечательного предела: 

lim х→ 0  tg x  = 1,
x
lim х→ 0  arcsin x  = 1,
x
lim х→ 0  arctg x  = 1,
x
lim х→ 0  2 · (1 – cos x)  = 1.
x2

 

Второй замечательный предел:

lim х→∞ (1 + 1/x)x = e  или  lim х→0 (1 + x)1/x = e.

 

Следствия из второго замечательного предела:

lim х→ 0  (1 + u)1/u = e,
lim х→  

(1 + k/x)x = ek,

lim х→ 0  ln(1 + x)   = 1,
x
lim х→ 0  e– 1  = 1,
x
lim х→ 0  a– 1  = 1,
x · ln a
lim х→ 0  (1 + x)α – 1  = 1.
αx

 

Вычисление пределов функции в точке 

Если y = f(x) непрерывна в точке х = а, то lim х→а f(x) = f(a).

Если в результате подстановки х = а при вычислении предела получаем выражение типа 0 / 0, то имеет смысл попытаться воспользоваться одним из следующих приёмов:

 

     Смотрите также: 

Таблицы чисел 

Алгебраические тождества

Степени

Арифметический корень n-й степени

Логарифмы 

Графики элементарных функций

Построение графиков функций геометрическими методами

Тригонометрия

Таблицы значений тригонометрических функций

Треугольники

Четырёхугольники

Многоугольники

Окружность 

Площади геометрических фигур

Прямые и плоскости

Многогранники 

Тела вращения