Иоганн Кеплер

Загрузка ...

1571–1630

 

Главной целью всех исследований внешнего мира

должно быть открытие рационального порядка и гармонии,

которые бог ниспослал миру и открыл нам на языке математики.

Иоганн Кеплер 

 

Иоганн Кеплер (27 декабря 1571 года – 15 ноября 1630 года) – немецкий математик, астроном, оптик и астролог, первооткрыватель законов движения планет Солнечной системы.

Иоганн Кеплер появился на свет в маленьком городке Вайль-дер-Штадт близ Штутгарта. Кеплер родился в бедной семье. Его отец служил наёмником в Испанских Нидерландах. Когда юноше было 18 лет, отец отправился в очередной поход и исчез навсегда. Мать Кеплера, Катарина Кеплер, содержала трактир, подрабатывала гаданием и траволечением.

Интерес к астрономии появился у Кеплера ещё в детские годы, когда его мать показала впечатлительному мальчику яркую комету (1577), а позднее – лунное затмение (1580).

Из-за бедности Кеплеру с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет. Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убеждённым сторонником теории Коперника.

В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Ещё до окончания университета, в 1594 году, Иоганна посылают преподавать математику в протестантское училище города Граца, столицы австрийской провинции Штирии. В Граце Кеплер провёл 6 лет.

Уже в 1596 году он издаёт «Космографическую тайну», где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определённом порядке вписаны и вокруг которых описаны правильные многогранники.

Кеплер попытался найти тайную гармонию Вселенной, для чего сопоставил орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные «платоновы тела» (правильные многогранники). Орбиту Сатурна он представил как круг (ещё не эллипс) на поверхности шара, описанного вокруг куба. В куб в свою очередь был вписан шар, который должен был представлять орбиту Юпитера. В этот шар был вписан тетраэдр, описанный вокруг шара, представлявшего орбиту Марса и т. д. Эта работа после дальнейших открытий Кеплера утратила своё первоначальное значение (хотя бы потому, что орбиты планет оказались не круговыми); тем не менее, в наличие скрытой математической гармонии Вселенной Кеплер верил до конца жизни, и в 1621 году переиздал «Тайну мира», внеся в ней многочисленные изменения и дополнения.

Несмотря на то, что этот труд Кеплера оставался ещё образцом схоластического, квазинаучного мудрствования, он принёс автору известность. Книгу «Тайна мира» Кеплер послал Галилею и Тихо Браге. Галилей одобрил гелиоцентрический подход Кеплера, хотя мистическую нумерологию не поддержал. В дальнейшем они вели оживлённую переписку, и это обстоятельство (общение с «еретиком-протестантом») на суде над Галилеем было особо подчёркнуто как отягчающее вину Галилея.

Знаменитый датский астроном-наблюдатель Тихо Браге, скептически отнёсшийся к самой схеме, отдал должное самостоятельности мышления молодого учёного, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.

В 1597 году Кеплер женится на вдове Барбаре Мюллер фон Мулек. Их первые двое детей умирают в младенчестве, а жена заболевает эпилепсией и через некоторое время умирает. В довершение невзгод, в католическом Граце начинаются гонения на протестантов. Кеплер занесён в список изгоняемых «еретиков» и вынужден покинуть город. Он принимает приглашение Тихо Браге, который к этому времени переехал в Прагу и служит у императора Рудольфа II придворным астрономом и астрологом.

Браге с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал своё объяснение устройства мира; планеты он признавал спутниками Солнца, а Солнце, Луну и звёзды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной. Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.

Философы Древней Греции думали, что круг – это самая совершенная геометрическая форма. А если так, то и планеты должны совершать свои обращения только по правильным кругам (окружностям) Кеплер пришёл к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путём вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решён быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, придём к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путём суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.

Альберт Эйнштейн назвал Кеплера «несравненным человеком» и писал о его судьбе:

Он жил в эпоху, когда ещё не было уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения! Сегодня, когда этот научный акт уже совершился, никто не может оценить полностью, сколько изобретательности, сколько тяжёлого труда и терпения понадобилось, чтобы открыть эти законы и столь точно их выразить.

Первый закон Кеплера предполагает: Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Кеплер нашёл, что скорость, с которой движется планета вокруг Солнца, также не всегда одинакова: подходя ближе к Солнцу, планета движется быстрее, а отходя дальше от него – медленнее. Эта особенность в движении планет составляет второй закон Кеплера. При этом Кеплер разрабатывает принципиально новый математический аппарат, делая важный шаг в развитии математики переменных величин.

Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая «Новая астрономия» – изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлёк к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.

Потребности астрономии стимулировали дальнейшее развитие вычислительных средств математики и их популяризации. В 1615 году Кеплер выпустил сравнительно небольшую по объёму, но весьма ёмкую по содержанию книгу – «Новая стереометрия винных бочек», в которой продолжил разработку своих интеграционных методов и применил их для нахождения объёмов более чем 90 тел вращения, подчас довольно сложных. Там же им были рассмотрены и экстремальные задачи, что подводило уже к другому разделу математики бесконечно малых – дифференциальному исчислению.

Необходимость совершенствования средств астрономических вычислений, составление таблиц движений планет на основе системы Коперника привлекли Кеплера к вопросам теории и практики логарифмов. Воодушевлённый работами Непера, Кеплер самостоятельно построил теорию логарифмов на чисто арифметической базе и с её помощью составил близкие к неперовым, но более точные логарифмические таблицы, впервые изданные в 1624 году и переиздававшиеся до 1700 года. Кеплер же первым применил логарифмические вычисления в астрономии. «Рудольфинские таблицы» планетных движений он смог завершить только благодаря новому средству вычислений.

Проявленный учёным интерес к кривым второго порядка и к проблемам астрономической оптики привёл его к разработке общего принципа непрерывности – своеобразного эвристического приёма, который позволяет находить свойства одного объекта по свойствам другого, если первый получается предельным переходом из второго. В книге «Дополнения к Вителлию, или Оптическая часть астрономии» (1604) Кеплер, изучая конические сечения, интерпретирует параболу как гиперболу или эллипс с бесконечно удалённым фокусом – это первый в истории математики случай применения общего принципа непрерывности. Введением понятия бесконечно удалённой точки Кеплер предпринял важный шаг на пути к созданию ещё одного раздела математики – проективной геометрии. У Кеплера впервые встречается термин «среднее арифметическое».

Вся жизнь Кеплера была посвящена открытой борьбе за учение Коперника. В 1617–1621 годах в разгар Тридцатилетней войны, когда книга Коперника уже попала в ватиканский «Список запрещённых книг», а сам учёный переживал особенно трудный период в своей жизни, он издаёт тремя выпусками общим объёмом примерно в 1000 страниц «Очерки коперниканской астрономии». Название книги неточно отражает её содержание – Солнце там занимает место, указанное Коперником, а планеты, Луна и незадолго до того открытые Галилеем спутники Юпитера обращаются по открытым Кеплером законам. Это был фактически первый учебник новой астрономии, и издан он был в период особенно ожесточённой борьбы церкви с революционным учением, когда учитель Кеплера Местлин, коперниканец по убеждениям, выпустил учебник астрономии по Птолемею!

В эти же годы Кеплер издаёт и «Гармонию мира», где он формулирует третий закон планетных движений. Учёный установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца. Это – третий закон Кеплера.

Третий закон Кеплера играет ключевую роль при определении масс планет и спутников. Действительно, периоды обращения планет вокруг Солнца и их гелиоцентрические расстояния определяются с помощью специальных математических методов обработки наблюдений, а массы планет непосредственно из наблюдений невозможно получить. В нашем распоряжении нет грандиозных космических весов, на одну чашу которых мы положили бы Солнце, а на другую – планеты. Третий закон Кеплера и компенсирует отсутствие таких космических весов, так как с его помощью мы легко можем определить массы небесных тел, образующих единую систему.

В 1604 году Кеплер издал содержательный трактат по оптике «Дополнения к Вителлию», а в 1611 году – ещё одну книгу, «Диоптрика». С этих трудов начинается история оптики как науки. В этих сочинениях Кеплер подробно излагает как геометрическую, так и физиологическую оптику. Он описывает преломление света, рефракцию и понятие оптического изображения, общую теорию линз и их систем. Вводит термины «оптическая ось» и «мениск», впервые формулирует закон падения освещённости обратно пропорционально квадрату расстояния до источника света. Впервые описывает явление полного внутреннего отражения света при переходе в менее плотную среду.

Описанный им физиологический механизм зрения, с современных позиций, принципиально верен. Кеплер выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости.

Глубокое проникновение в законы оптики привело Кеплера к схеме телескопической подзорной трубы (телескоп Кеплера), изготовленной в 1613 году Кристофом Шайнером. К 1640-м годам такие трубы вытеснили в астрономии менее совершенный телескоп Галилея.

Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют своё значение: научившись учитывать взаимодействие небесных тел, учёные их используют не только для расчёта движений естественных небесных тел, но, что особенно важно, и искусственных, таких как космические корабли.

Кеплер занимался не только исследованием обращения планет, он интересовался и другими вопросами астрономии. Его внимание особенно привлекали кометы. Подметив, что хвосты комет всегда обращены в сторону от Солнца, Кеплер высказал догадку, что хвосты образуются под действием солнечных лучей. В то время ничего ещё не было известно о природе солнечного излучения и строении комет. Только во второй половине XIX века и в XX веке было установлено, что образование хвостов комет действительно связано с излучением Солнца.

Выдающийся астроном и математик Иоганн Кеплер был также страстным астрологом. Благодаря некоторым удачным предсказаниям Кеплер заработал репутацию искусного астролога. В Праге одной из его обязанностей было составление гороскопов для императора. Некоторые историки науки утверждают, что Кеплер был вынужден заниматься астрологией разве лишь для того, чтобы заработать себе на кусок хлеба. Скорее всего, если это и верно, то не в полной мере. Так в своей работе «О себе» он приводит описание собственного гороскопа, а когда в январе 1598 года у него родился сын, Генрих, Кеплер составил гороскоп и для него.

Кеплер не порывал с астрологией никогда. Более того, он имел свой собственный взгляд на природу астрологии, чем выделялся среди астрологов-современников. В труде «Гармония мира» он утверждает, что «в небесах нет светил, приносящих несчастья», но человеческая душа способна «резонировать» с лучами света, исходящими от небесных тел, она запечатлевает в памяти конфигурацию этих лучей в момент своего рождения. Сами же планеты, в представлении Кеплера, были живыми существами, наделёнными индивидуальной душой.

Кеплеру, терпевшему гонения и со стороны католических правителей, которым он служил, и со стороны единоверцев-лютеран, не все догмы которых он мог принять, приходится много переезжать. Прага, Линц, Ульм, Саган – неполный список городов, в которых он трудился.

В 1613 году Кеплер женится на 24-летней дочери столяра Сюзанне. У них родилось семеро детей, выжили четверо.

В 1615 году Кеплер получает известие, что его мать обвинена в колдовстве. Обвинение серьёзное: прошлой зимой в Леонберге, где жила Катарина, были по той же статье сожжены 6 женщин. Обвинение содержало 49 пунктов: связь с дьяволом, богохульство, порча, некромантия. Кеплер пишет городским властям; мать вначале отпускают, но затем снова арестовывают. Следствие тянулось 5 лет. Наконец, в 1620 году начался суд. Кеплер сам выступил защитником, и через год измученную женщину, наконец, освободили. В следующем году она скончалась.

В 1630 году отправляется к императору в Регенсбург, чтобы получить хотя бы часть причитавшегося и задерживаемого жалованья. По дороге сильно простужается и вскоре умирает.

После смерти Кеплера наследникам досталось: поношенная одежда, 22 флорина наличными, 29000 флоринов невыплаченного жалованья, 27 опубликованных рукописей и множество неопубликованных; они позже были изданы в 22-томном сборнике.

Со смертью Кеплера его злоключения не закончились. В конце Тридцатилетней войны было полностью разрушено кладбище, где он похоронен, и от его могилы ничего не осталось. Часть архива Кеплера исчезла. В 1774 году большая часть архива (18 томов из 22) по рекомендации Леонарда Эйлера приобретена Петербургской Академией наук и сейчас хранится в Санкт-Петербургском филиале архива Российской Академии Наук.

В честь учёного названы:

В Вайль-дер-Штадте (Германия), Праге (Чехия) и Граце (Австрия) функционируют музеи Кеплера.

В 1971 году к 400-летию со дня рождения Кеплера в Германской Демократической Республике была выпущена памятная монета достоинством 5 марок.

В 2009 году к 400-летию открытия Кеплеровских законов в Германии выпущена памятная серебряная монета достоинством 10 евро.

Имя Кеплера носят следующие объекты естествознания:

По материалам Википедии и книги Д. Самина «100 великих учёных».